A Proof of Sageev’s Theorem on Hyperplanes in Cat(0) Cubical Complexes

نویسنده

  • DANIEL FARLEY
چکیده

We prove that any hyperplane H in a CAT(0) cubical complex X has no self-intersections and separates X into two convex complementary components. These facts were originally proved by Sageev. Our argument shows that his theorem (or this direction of his theorem) is a corollary of Gromov’s link condition. We also give new arguments establishing some combinatorial properties of hyperplanes. We show that these properties are sufficient to prove that the 0-skeleton of any CAT(0) cubical complex is a discrete median algebra, a fact that was previously proved by Roller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tits Alternative for Cat(0) Cubical Complexes

We prove a Tits alternative theorem for groups acting on CAT(0) cubical complexes. Namely, suppose that G is a group for which there is a bound on the orders of its finite subgroups. We prove that if G acts properly on a finitedimensional CAT(0) cubical complex, then either G contains a free subgroup of rank 2 or G is finitely generated and virtually abelian. In particular the above conclusion ...

متن کامل

The Action of Thompson’s Group on a Cat(0) Boundary

For a given locally finite CAT(0) cubical complex X with base vertex ∗, we define the profile of a given geodesic ray c issuing from ∗ to be the collection of all hyperplanes (in the sense of [17]) crossed by c. We give necessary conditions for a collection of hyperplanes to form the profile of a geodesic ray, and conjecture that these conditions are also sufficient. We show that profiles in di...

متن کامل

From Wall Spaces to Cat(0) Cube Complexes

We explain how to adapt a construction of M. Sageev’s to construct a proper action on a CAT(0) cube complex starting from a proper action on a wall space.

متن کامل

A polynomial time algorithm to compute geodesics in CAT(0) cubical complexes

This paper presents the first polynomial time algorithm to compute geodesics in a CAT(0) cubical complex in general dimension. The algorithm is a simple iterative method to update breakpoints of a path joining two points using Owen and Provan’s algorithm (2011) as a subroutine. Our algorithm is applicable to any CAT(0) space in which geodesics between two close points can be computed, not limit...

متن کامل

Geodesics in CAT(0) Cubical Complexes

We describe an algorithm to compute the geodesics in an arbitrary CAT(0) cubical complex. A key tool is a correspondence between cubical complexes of global non-positive curvature and posets with inconsistent pairs. This correspondence also gives an explicit realization of such a complex as the state complex of a reconfigurable system, and a way to embed any interval in the integer lattice cubi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009